
Quantum Algorithms 2/14/2023

Lecture 7: Quantum Distance

Instructor: Dieter van Melkebeek

In this lecture we investigate how errors propagate through a quantum circuit. We measure
distances between probability distributions using that statistical distance, and distances between
density operators and unitaries using various matrix norms. We characterize common norms after
a review of the singular value decomposition of a matrix, and then establish bounds on the error
propagation.

1 Solution to Exercise #5

We start with the solution to the homework exercise from last lecture: What rotation represents
the action of the Hadamard gate H in the Bloch sphere?

Recall that the density operator ρ of every single-qubit mixed state can be written as

ρ =
I + ~r~σ

2
, (1)

where ~r ∈ R3 is a vector of length ‖~r‖1 ≤ 1. The vector ~r is unique and is called the Bloch vector
of ρ.
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Figure 1: Bloch sphere

Further recall that the action of a unitary operator on ρ in the Bloch sphere is that of a rotation
about an axis through the origin, and that

H =
1√
2

[
1 1
1 −1

]
.

First solution. Since H1 = I, the angle of rotation needs to be π, i.e., the rotation is a reflection
through an axis. As H maps |0〉 on the positive z-axis to |+〉 on the positive z-axis, the axis of
reflection needs to go through the bisector of the positive x-axis and the positive z-axis. These two
features fully specify the rotation.
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Second solution. After applying H, the density operator becomes ρ′ = HρH∗ = HρH. We
plug in (1) and simplify using HXH = Z, HYH = −Y , and ZHZ = X. This shows that the new
Bloch vector ~r′ equals (rz,−ry, rx), where ~r

.
= (rx, ry, rz). The transformation from ~r to ~r′ is that

of a reflection through the bisector of the positive x- and z-axis.

Third solution. We saw last lecture that every unitary U on a single qubit can be written in
the Pauli basis as

U = eiα (cos(γ)I + i sin(γ)(~u · σ)) , (2)

where all parameters α, γ, and ~u are real, and ‖~u‖2 = 1. With the restrictions that α ∈ [0, 2π) and
γ ∈ [0, π/2], the decomposition is unique. The action of U on the Bloch sphere is that of a rotation
about ~u over 2γ. We can write H as U = 1√

2
(X + Z), which shows that that the axis of rotation

is ~u = 1√
2
(1, 0, 1). Moreover, since all Pauli matrices have vanishing traces, in the decomposition

(2) we have that Tr(U) = eiα cos(γ) Tr(I) = 2eiα cos(γ). Since Tr(H) = 0, it follows that γ = π/2,
and thus the rotation is over 2γ = π.

2 From states to output distributions

Suppose we have implemented some quantum system in the real world. Due to noise or errors,
theoretically identical operators may be different though “close”. Which notion of “closeness” of
density operators guarantees closeness of the resulting output distributions?

Let us first recall the notion of closeness of probability distributions based on the statistical
distance.

Definition 1 (Statistical distance). The statistical distance between two distributions p0, p1 is
given by

dstat (p0, p1)
.
= max {|p0(E)− p1(E)| : E ⊆ {0, 1}n}

In words, the statistical distance gives the maximum difference in probability that p0 and p1 assign
to an event. The measure can also be written in terms of the difference in 1-norm when p0 and p1
are viewed as vectors of probabilities for all the individual elements of the underlying universe:

dstat (p0, p1) =
1

2

∑
s

|p0(s)− p1(s)| =
1

2
‖p0 − p1‖1

The first equation follows because the maximum difference is obtained by taking up in E exactly
the elements of the universe for which p0 ≥ p1. In that case

‖p0 − p1‖1
.
=
∑
s

|p0(s)− p1(s)| =
∑
s∈E

(p0(s)− p1(s)) +
∑
s/∈E

(p1(s)− p0(s))

= p0(E)− p1(E) + (p1(E)− p0(E))

= p0(E)− p1(E) + (1− p1(E)− (1− p0(E)))

= 2(p0(E)− p1(E)).

We investigate the statistical distance between distributions arising from density operators, and
connect it back to a norm on the density operators’ difference.
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Consider two density operators ρb for b ∈ {0, 1}, and the probability distributions pb they induce
on the possible outcomes after a full measurement. First, recall that pb(s) = 〈s| ρb |s〉. Then consider
the deviation σ

.
= ρ0 − ρ1, which is a Hermitian matrix and therefore has an orthonormal basis of

eigenstates {|ψi〉}i. We can express σ in terms of its eigenstates as follows: σ =
∑

i λi |ψi〉 〈ψi|. For
any state s, this allows us to write p0(s)− p1(s) = 〈s|σ |s〉 =

∑
i λi |〈ψi|s〉|

2. Now, we can sum over
s to compute the 1-norm:

‖p0 − p1‖1 =
∑
s

∣∣∣∣∣∑
i

|〈ψi|s〉|2
∣∣∣∣∣

≤
∑
s

∑
i

|λi| |〈ψi|s〉|2 (by the triangle inequality)

=
∑
i

|λi|
∑
s

|〈ψi|s〉|2︸ ︷︷ ︸
=1 since this is just
the probability of

being in any state s

=
∑
i

|λi|

For a Hermitian matrix like σ, the sum
∑

i |λi| of the absolute values of the eigenvalues is known as
the trace norm of σ, denoted ‖σ‖Tr. We will explain the terminology and connect with other norms
after a review of the singular value decomposition, but let us first state the result we obtained.

Fact 1. Let p0, p1 be the probability distributions on the outcomes obtained by full measurements
of the quantum states ρ0, ρ1, respectively. Then

dstat (p0, p1) ≤ 1
2 ‖ρ0 − ρ1‖Tr ,

where ρ1 and ρ2 are viewed as density matrices.

3 Singular value decomposition

For use in this lecture and much later in the course, we state and derive the singular value decom-
position (SVD) of complex matrices. The derivation explains some of the terminology used with
SVD, which we review after the proof.

Theorem 2 (Singular Value Decomposition (SVD)). For any matrix A ∈ CM×N there exist
unitary matrices U ∈ CM×M , V ∈ CN×N as well as a diagonal matrix Σ ∈ RM×N≥0 such that

A = UΣV ∗. (3)

Proof. Consider the matrix B
.
= A∗A, which has dimension N ×N . As B is Hermitian (B∗ = B),

it has an orthonormal basis of eigenvectors with real eigenvalues. Thus, there exist a unitary
matrix V ∈ CN×N (consisting of normalized eigenvectors of B) and a diagonal matrix Λ ∈ RN×N
(containing the eigenvalues of B) such that BV = V Λ. Moreover, B is positive semidefinite
because 〈ψ|B|ψ〉 = ‖A |ψ〉 ‖2 is a nonnegative real for every |ψ〉. Thus, the eigenvalues λi of B are
nonnegative and can be written as the square of some other reals: λi = σ2i for some σi ∈ R≥0.
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There are r nonzero eigenvalues, where r equals the rank of A∗A and also the rank of A. Without
loss of generality these are λi for i ∈ [r].

Consider the matrix W
.
= AV , which has dimension M×N . Note that W ∗W = (V ∗A∗)(AV ) =

V ∗(BV ) = V ∗V Λ = Λ. This means that the columns of W are orthogonal vectors in CM . The j-th
column, W·,j , has 2-norm ‖W·,j‖2 = σj . By normalizing the nonzero columns, setting U·,j = 1

σj
W·,j

for jj ∈ [r], and extending with appropriate columns U·,j for the remaining j ∈ [M ] to form a
full orthonormal basis for CM , we obtain a unitary matrix U ∈ CM×M such that W = UΣ, where
Σ ∈ RM×N≥0 is the diagonal matrix with diagonal elements σ1, σ2 . . . , σmin(M,N). As W

.
= AV , we

have AV = UΣ, which is equivalent to (3). �

We make some observations about the uniqueness of the decomposition and introduce the
following terminology.

◦ The values σ1, . . . σr are called the singular values of A. They are the positive square roots
of the nonzero eigenvalues of A∗A, and are uniquely determined. They are usually ordered
from largest to smallest: σ1 ≥ σ2 . . . ,≥ σr > 0. σ1 is the largest factor by which the length
of a vector gets stretched under the application of A. Similarly, σr is the smallest (nonzero)
stretch factor.

◦ The columns V∗j of V are eigenvectors of A∗A. The ones corresponding to nonzero eigenvalues
are referred to as right singular vectors (because V appears on the right in (3)) and also as
row singular vectors (because they appear as rows of V ∗ in (3)). If all singular values are
distinct, then the right/row singular vectors are unique up to a complex unit. Otherwise,
there are more degrees of freedom. In any case, the subspace spanned by the right/row
singular vectors corresponding to a particular singular value is always the same, irrespective
of which right/row singular vectors are chosen.

◦ The columns U∗j of U are eigenvectors of AA∗. The ones corresponding to nonzero eigenvalues
are referred to as left singular vectors (because U appears on the left in the decomposition
(3)) and also as column singular vectors (because they appear as columns in (3)). Simi-
lar uniqueness considerations apply to the right/row singular vectors as to the left/column
singular vectors.

◦ If A is Hermitian, then the singular values of A are the absolute values of the nonzero eigen-
values (which are real but can be negative). The i-th left and right singular vectors of A are
also eigenvectors of A belonging to the same eigenvalue, and can be chosen to be the same
except for a sign in case the eigenvalue is negative. The same applies for the columns of U
and V corresponding to the eigenvalue 0 (if any). In particular, this applies to the setting of
Fact 1, as the difference ρ1 − ρ2 of two density operators is Hermitian.

4 Vector and matrix norms

Recall the requirements for a norm:

Definition 2 (norm). A norm is a map ‖·‖ from a vectorspace V to R satisfying (1), (2), and
(3) for any u, v ∈ V and α ∈ R.

(1) absolute homogeneity: ‖αv‖ = |α| ‖v‖.
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(2) triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

(3) definiteness: If ‖v‖ = 0, then v = 0.

Note that (1) implies that ‖0‖ = 0, which in combination with (2) implies that ‖v‖ = 1
2(‖v‖+‖v‖) ≥

1
2‖v− v‖ = 0. Another consequence of (1) and (2) is that that the unit ball, i.e., the vectors v ∈ V
with ‖v‖ ≤ 1, needs to be convex.

We make use of the following norms for vectors:

Definition 3 (Vector p-norms). For p ∈ [1,∞) the following is the p-norm of x ∈ Cn:

‖x‖p
.
=

(∑
i

|xi|p
)1
p

.

Taking the limit as p→∞, we can extend this to p ∈ [1,∞] with

‖x‖∞
.
= max {|xi|}i .

Absolute homogeneity and definiteness hold for every positive value of p. The triangle inequality
fails for p < 1 because the unit ball is not convex. That the triangle inequality holds for p ≥ 1 is
known as Minkowski’s inequality (closely related to Hölders inequality).

Given a vector norm ‖·‖, we can generically define an induced matrix norm ‖·‖, known as the
operator norm:

‖A‖ .= max {‖Ax‖ : ‖x‖ = 1} .

Think of ‖A‖ as the most a unit ball can be stretched in any direction by applying A to it. Note
that any such matrix norm is submultiplicative: ‖AB‖ ≤ ‖A‖ · ‖B‖.

In particular, we use ‖A‖p for p ∈ [1,∞] to denote the operator norm induced by ‖·‖p as the
vector norm.

Definition 4 (Operator norm). For a matrix A and any p ∈ [1,∞],

‖A‖p
.
= max

{
‖Ax‖p : ‖x‖p = 1

}
.

In the special where p = 2, the maximum stretch is just the furthest stretch in Euclidean space,
which is given by the largest singular value of A, so ‖A‖2 = σ1. This norm is often referred to a
the spectral norm.

An arguably more elementary way to define matrix norms is to view a matrix A as a big vector
and apply a vector norm to it. A commonly used matrix norm does this with the 2-norm as the
vector norm:

Definition 5 (Frobenius norm). The Frobenius norm of a matrix A is:

‖A‖F
.
=

√∑
i,j

|Aij |2.
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Note that √∑
i,j

|Aij |2 =
√

Tr (A∗A) =

√∑
i

σ2i = ‖~σ‖2 .

This shows that the Frobenius norm is a special case of the family of so-called Schatten norms. For
any p ∈ [1,∞], the p-Schatten norm of a matrix A with singular values ~σ is given by ‖~σ‖p. In fact,
the spectral norm is also a Schatten norm, namely corresponding to p = ∞. Another special case
of the Schatten norms that is often used and has its own name, corresponds to the case p = 1.

Definition 6 (Trace/Nuclear norm). The trace norm (also known as nuclear norm) of a matrix
A is given by

‖A‖Tr
.
= Tr

(√
A∗A

)
=
∑
i

σi = ‖~σ‖1 .

A useful property of Schatten norms is that they are invariant under unitary transformations
as the singular values are unaffected by such transformations. One way to see this is through the
SVD. Like all operator norms, the Schatten norms are submultiplicative.

5 From unary operators to states

Suppose that we want to apply a unitary operator to a given state, but we only manage to realize
a close approximation and thus in reality apply a different unitary. How different can the resulting
states be? We derive a good upper bound in this section.

Suppose we have initial state ρ, and then we apply either of two unitary operators U0 or U1,
resulting in the states ρ0 or ρ1, respectively. We know from previous lectures that ρb = UbρU

∗
b for

b ∈ {0, 1}. We have the following:

‖ρ0 − ρ1‖Tr = ‖U0ρU
∗
0 − U1ρU

∗
1 ‖Tr (expanding ρb)

= ‖U0ρ (U∗0 − U∗1 ) + (U0 − U1) ρU
∗
1 ‖Tr (adding zero)

≤ ‖U0ρ (U∗0 − U∗1 )‖Tr + ‖(U0 − U1) ρU
∗
1 ‖Tr (triangle inequality)

≤ ‖ρ (U∗0 − U∗1 )‖Tr + ‖(U0 − U1) ρ‖Tr (singular values unchanged by unitary)

= 2 ‖(U0 − U1) ρ‖Tr (conjugation preserves norms)

In order to upper bound ‖(U0 − U1) ρ‖Tr as a function of the distance between U0 and U1, we
analyze ‖Aρ‖Tr for a generic matrix A, and apply the result with A = U0 − U1.

First consider the case of a pure state ρ
.
= |ψ〉 〈ψ|, which is a rank 1 matrix, and analyze the

effect of Aρ. Note that when we apply ρ to |ψ〉, we get (|ψ〉 〈ψ|) |ψ〉 = |ψ〉 (〈ψ| |ψ〉) = |ψ〉. When
we apply ρ to any |φ〉 that is orthogonal to |ψ〉, we get (|ψ〉 〈ψ|) |φ〉 = |ψ〉 (〈ψ| |φ〉) = |ψ〉 · 0, which
is the zero vector. This implies there is an orthonormal basis containing |ψ〉 in which one basis
vector, namely |ψ〉, is stretched by Aρ by a factor of ‖A |ψ〉‖2, and the other vectors are shrunk
by Aρ to the zero vector. This means that Aρ has one singular vector of value σ1(Aρ) = ‖A |ψ〉‖2,
and the other ones are all zero. Thus, ‖Aρ‖Tr =

∑
i σi(Aρ) = σ1(Aρ) = ‖A |ψ〉‖2 ≤ ‖A‖2.

Now we extend by linearity to mixed states. Consider the mixed state ρ =
∑

j pjρj where ρj

are pure states. ‖Aρ‖Tr =
∥∥∥∑j pjAρj

∥∥∥
Tr
≤
∑

j pj ‖Aρj‖Tr ≤ ‖A‖Tr, where the first inequality is

the triangle inequality, and the second one comes from the fact that
∑

j pj = 1 combined with our
result on individual pure states. We conclude:
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Fact 3. Let ρ0 and ρ1 be the states obtained by applying the unitary matrices U0 and U1 to a
common start state ρ, respectively. Then

‖ρ0 − ρ1‖Tr ≤ 2 ‖(U0 − U1)‖2 .

Moreover, if ρ corresponds to the pure state |ψ〉, then

‖ρ0 − ρ1‖Tr ≤ 2 ‖(U0 − U1) |ψ〉‖2 .

Combined with Fact 1, we obtain the following upper bound on the statistical distance between
the output distributions p0 and p1 obtained by measuring states ρ0 and ρ1, respectively:

d(p0, p1) ≤ ‖(U0 − U1)‖2 ,

and
d(p0, p1) ≤ ‖(U0 − U1) |ψ〉‖2

in case the start state is the pure state |ψ〉.

6 Quantum gate precision

Suppose we have a unitary circuit with quantum gates Qi for i ∈ [t]. Then any implementation of

Qi may have some imprecision and instead realize Q̃i such that
∥∥∥Q̃i −Qi∥∥∥

2
≤ ε for some ε > 0.

The effect of this imprecision at the ith gate on the full system is Ui = Qi ⊗ I ≈ Ũi = Q̃i ⊗ I

Exercise #6: Show that
∥∥∥Ũi − Ui∥∥∥

2
=
∥∥∥Q̃i −Qi∥∥∥

2
.

For the whole circuit U = UtUt−1Ut−2 · · ·U2U1 we obtain the approximate implementation Ũ =
ŨtŨt−1Ũt−2 . . . Ũ2Ũ1. How do the consecutive errors compound? Defining the partial products
U (i) .= UiUi−1 . . . U1 and Ũ (i) .= Ũi . . . Ũ1, we have:

‖Ũ (i) − U (i)‖2 = ‖ŨiŨ (i−1) − UiU (i−1)‖2
= ‖Ũi(Ũ (i−1) − U (i−1)) + (Ũi − Ui)U (i−1)‖2 (adding zero)

≤ ‖Ũi(Ũ (i−1) − U (i−1))‖2 + ‖(Ũi − Ui)U (i−1)‖2 (triangle inequality)

= ‖Ũi − Ui‖2 + ‖Ũ (i−1) − U (i−1)‖2,

where the last step can be argued by the fact that a unitary does not change the 2-norm of a
vector (and using the operator definition of matrix norm), or that a unitary does not change the
singular values (and using the expression for the matrix norm in terms of the singular values), or
that operator matrix norms satisfy ‖AB‖ ≤ ‖A‖ · ‖B‖ and that a unitary matrix has 2-norm one
(for either of the previous reasons). We conclude that consecutive error bounds merely add:∥∥∥Ũ − U∥∥∥

2
≤

t∑
i=1

∥∥∥Ũi − Ui∥∥∥
2

=
t∑
i=1

∥∥∥Q̃i −Qi∥∥∥
2
≤ tε. (4)

In combination with Fact 1 and Fact 3 we have shown that

d(p̃, p) ≤ 1

2
‖ρ̃− ρ‖Tr ≤

∥∥∥Ũ − U∥∥∥
2
≤ tε.

In words:
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Theorem 4. If each of t gates is implemented to within ε precision in 2-norm, then the output
distribution differs from the correct one by at most tε in statistical distance.

The reason why the errors only add up is the fact that the transition matrices are unitary. For
general transition matrices, the errors in individual steps can blow up. For general matrices Ui
and Ũi satisfying ‖Ũi−Ui‖ ≤ εi, a similar derivation as above (using the additional step of writing
Ũi(Ũ

(i−1) − U (i−1)) as (Ũi − Ui)(Ũ (i−1) − U (i−1)) + Ui(Ũ
(i−1) − U (i−1)) and applying the triangle

inequality one more time) shows the following bound:

‖Ũ − U‖2 ≤
t∏
i=1

(εi + ‖Ui‖2)−
t∏
i=1

‖Ui‖2. (5)

Note that for unitary matrices ‖Ui‖2 = 1, in which case the general bound (5) yields a somewhat
weaker bound that (4), namely ‖Ũ − U‖2 ≤ (ε+ 1)t − 1.

This relates to how the errors propagate when solving systems of linear equations, which we
will discuss later in the course. There the error is controlled by the condition number of the matrix,
with the condition number being the ratio of top singular value to smallest singular value. Unitary
matrices similarly save us there since they have the smallest possible condition number of 1; as
they maintain inner products, all of their singular values are equal to 1 in absolute value.
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